O grupo PET (Programa de Educação Tutorial) dos alunos de Matemática da Unb (Universidade de Brasília) realiza trabalhos de pesquisa, extensão e ensino na área matemática. Por meio deste blog, pretendemos divulgar os nossos trabalhos para comunidade.
segunda-feira, 16 de novembro de 2009
Legendre != Legendre
Adrien-Marie Legendre foi um matemático francês que viveu no fim do século XVIII e início do século XIX. Contribuiu para diversos campos da rainha das ciências e usualmente o identificamos por esta fotografia:
Certo? Errado. Esta é, na verdade, uma fotografia do político francês, anterior ao Legendre matemático, Louis Legendre. Oúnico e verdadeiro retrato que temos do Legendre que nos interessa é, de fato, uma caricatura. Onde ele aparece sisudo ao lado de outro matemático igualmente icônico, o (gorducho e sorridente) Joseph Fourier:
Alunos do Departamento de Matemática da Universidade Northwestern, nos EUA, criou um grupo acapella, inclusive gravando um cd inteiro onde todas as músicas são compostas por referências matemáticas.
O vídeo abaixo mostra a execução das composições dos rapazes, "Finite Simple Group (of Order Two)". Adorável!
E a letra, pra quem se arriscar a cantar:
The path of love is never smooth But mine's continuous for you You're the upper bound in the chains of my heart You're my Axiom of Choice, you know it's true
But lately our relation's not so well-defined And I just can't function without you I'll prove my proposition and I'm sure you'll find We're a finite simple group of order two
I'm losing my identity I'm getting tensor every day And without loss of generality I will assume that you feel the same way
Since every time I see you, you just quotient out The faithful image that I map into But when we're one-to-one you'll see what I'm about 'Cause we're a finite simple group of order two
Our equivalence was stable, A principal love bundle sitting deep inside But then you drove a wedge between our two-forms Now everything is so complexified
When we first met, we simply connected My heart was open but too dense Our system was already directed To have a finite limit, in some sense
I'm living in the kernel of a rank-one map From my domain, its image looks so blue, 'Cause all I see are zeroes, it's a cruel trap But we're a finite simple group of order two
I'm not the smoothest operator in my class, But we're a mirror pair, me and you, So let's apply forgetful functors to the past And be a finite simple group, a finite simple group, Let's be a finite simple group of order two (Oughter: "Why not three?")
I've proved my proposition now, as you can see, So let's both be associative and free And by corollary, this shows you and I to be Purely inseparable. Q. E. D.